Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Shock ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661177

RESUMO

BACKGROUND: Hemolysis is a frequent complication in patients with sepsis, ARDS, or extracorporeal membrane oxygenation (ECMO). Haptoglobin (Hp) can scavenge released cell-free hemoglobin (CFH). Hemolysis and low plasma concentrations of Hp may be independently associated with mortality in critically ill patients. METHODS: Retrospective analysis of 435 patients with ARDS and veno-venous ECMO therapy, admitted to a tertiary ARDS referral center (01/2007-12/2018). Hp-depletion was defined as decrease in plasma Hp concentration < 0.39 g/l within the first week after ECMO initiation. Patients with Hp depletion were compared to patients without Hp depletion. The primary endpoint was 28-day mortality. Secondary endpoints included organ dysfunction-free, renal replacement therapy (RRT)-free, vasopressor-free, and ECMO-free composites. RESULTS: Patients with Hp-depletion (n = 269) had a significantly higher mortality 28 days after ECMO initiation compared to patients without Hp-depletion (43.5%, [95% CI: 37.52-49.66] vs. 25.3%, [19.03-32.74], p < 0.001). Furthermore, patients with Hp depletion had fewer organ dysfunction-free days (subdistribution hazard ratio, [SHR] 0.35, [95% CI 0.25-0.50], p < 0.001), lower chances for successful weaning from renal replacement therapy (SHR 0.50, [0.32-0.79], p < 0.001), vasopressor therapy (SHR 0.39, [0.28-0.54], p < 0.001), and ECMO therapy (SHR 0.41, [0.30-0.57], p < 0.001) within 28 days after ECMO initiation. Patients with initial Hp <0.66 g/l had higher risks for Hp-depletion than patients with initial Hp ≥ 0.66 g/l. CONCLUSION: Patients with Hp-depletion within the first week of ECMO therapy might benefit from close monitoring of hemolysis with early detection and elimination of the underlying cause. They might be potential candidates for future Hp supplementation therapy to prevent overload of the CFH-scavenger system.

2.
ASAIO J ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446867

RESUMO

When determining extracorporeal oxygen transfer (V ML O 2 ) during venovenous extracorporeal membrane oxygenation (VV ECMO) dissolved oxygen is often considered to play a subordinate role due to its poor solubility in blood plasma. This study was designed to assess the impact of dissolved oxygen on systemic oxygenation in patients with acute respiratory distress syndrome (ARDS) on VV ECMO support by differentiating between dissolved and hemoglobin-bound extracorporeal oxygen transfer. We calculated both extracorporeal oxygen transfer based on blood gas analysis using the measuring energy expenditure in extracorporeal lung support patients (MEEP) protocol and measured oxygen uptake by the native lung with indirect calorimetry. Over 20% of V ML O 2 and over 10% of overall oxygen uptake (VO 2 total ) were realized as dissolved oxygen. The transfer of dissolved oxygen mainly depended on ECMO blood flow (BF ML ). In patients with severely impaired lung function dissolved oxygen accounted for up to 28% of VO 2 total . A clinically relevant amount of oxygen is transferred as physically dissolved fraction, which therefore needs to be considered when determining membrane lung function, manage ECMO settings or guiding the weaning procedure.

3.
Chest ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38403186

RESUMO

BACKGROUND: Electromagnetic stimulation of the phrenic nerve induces diaphragm contractions, but no coils for clinical use have been available. We recently demonstrated the feasibility of ventilation using bilateral transcutaneous noninvasive electromagnetic phrenic nerve stimulation (NEPNS) before surgery in lung-healthy, normal-weight patients in a dose-dependent manner. RESEARCH QUESTION: Is NEPNS feasible in critically ill patients in an ICU setting? STUDY DESIGN AND METHODS: This feasibility nonrandomized controlled study aimed to enroll patients within 36 h of intubation who were expected to remain ventilated for ≥ 72 h. The intervention group received 15-min bilateral transcutaneous NEPNS bid, whereas the control group received standard care. If sufficient, NEPNS was used without pressure support to ventilate the patient; pressure support was added if necessary to ventilate the patient adequately. The primary outcome was feasibility, measured as time to find the optimal stimulation position. Further end points were sessions performed according to the protocol or allowing a next-day catch-up session and tidal volume achieved with stimulation reaching only 3 to 6 mL/kg ideal body weight (IBW). A secondary end point was expiratory diaphragm thickness measured with ultrasound from days 1 to 10 (or extubation). RESULTS: The revised European Union regulation mandated reapproval of medical devices, prematurely halting the study. Eleven patients (five in the intervention group, six in the control group) were enrolled. The median time to find an adequate stimulation position was 23 s (interquartile range, 12-62 s). The intervention bid was executed in 87% of patients, and 92% of patients including a next-day catch-up session. Ventilation with 3 to 6 mL/kg IBW was achieved in 732 of 1,701 stimulations (43.0%) with stimulation only and in 2,511 of 4,036 stimulations (62.2%) with additional pressure support. A decrease in diaphragm thickness was prevented by bilateral NEPNS (P = .034) until day 10. INTERPRETATION: Bilateral transcutaneous NEPNS was feasible in the ICU setting with the potential benefit of preventing diaphragm atrophy during mechanical ventilation. NEPNS ventilation effectiveness needs further assessment. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT05238753; URL: www. CLINICALTRIALS: gov.

4.
Ann Intensive Care ; 14(1): 32, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407643

RESUMO

BACKGROUND: Characterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient. METHODS: In this study, we recorded surface electromyography ([Formula: see text]) signals from the diaphragm and intercostal muscles and esophageal pressure ([Formula: see text]) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in [Formula: see text], blinded toward each other, the [Formula: see text] signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in [Formula: see text] as a reference for automated asynchrony classification and asynchrony index calculation. RESULTS: Spontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in [Formula: see text] demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in [Formula: see text]. The average delay of automatically detected inspiratory onset to the [Formula: see text] reference was [Formula: see text]79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of [Formula: see text] to the [Formula: see text]-based reference. CONCLUSIONS: Our study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.

5.
Clin Nutr ESPEN ; 57: 318-330, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37739675

RESUMO

Nutritional assessment and provision of nutritional therapy are a core part of intensive care unit (ICU) patient treatment. The ESPEN guideline on clinical nutrition in the ICU was published in 2019. However, uncertainty and difficulties remain regarding its full implementation in daily practice. This position paper is intended to help ICU healthcare professionals facilitate the implementation of ESPEN nutrition guidelines to ensure the best care for their patients. We have aimed to emphasize the guideline recommendations that need to be implemented in the ICU, are advised, or are optional, and to give practical directives to improve the guideline recommendations in daily practice. These statements were written by the members of the ICU nutrition ESPEN special interest group (SIG), based on a survey aimed at identifying current practices relating to key issues in ICU nutrition. The ultimate goal is to improve the ICU patients quality of care.


Assuntos
Estado Nutricional , Opinião Pública , Humanos , Unidades de Terapia Intensiva , Avaliação Nutricional , Cuidados Críticos
7.
Anaesth Crit Care Pain Med ; 42(5): 101255, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257753

RESUMO

BACKGROUND: Corona Virus Disease 2019 (COVID-19) patients display risk factors for intensive care unit acquired weakness (ICUAW). The pandemic increased existing barriers to mobilisation. This study aimed to compare mobilisation practices in COVID-19 and non-COVID-19 patients. METHODS: This retrospective cohort study was conducted at Charité-Universitätsmedizin Berlin, Germany, including adult patients admitted to one of 16 ICUs between March 2018, and November 2021. The effect of COVID-19 on mobilisation level and frequency, early mobilisation (EM) and time to active sitting position (ASP) was analysed. Subgroup analysis on COVID-19 patients and the ICU type influencing mobilisation practices was performed. Mobilisation entries were converted into the ICU mobility scale (IMS) using supervised machine learning. The groups were matched using 1:1 propensity score matching. RESULTS: A total of 12,462 patients were included, receiving 59,415 mobilisations. After matching 611 COVID-19 and non-COVID-19 patients were analysed. They displayed no significant difference in mobilisation frequency (0.4 vs. 0.3, p = 0.7), maximum IMS (3 vs. 3; p = 0.17), EM (43.2% vs. 37.8%; p = 0.06) or time to ASP (HR 0.95; 95% CI: 0.82, 1.09; p = 0.44). Subgroup analysis showed that patients in surge ICUs, i.e., temporarily created ICUs for COVID-19 patients during the pandemic, more commonly received EM (53.9% vs. 39.8%; p = 0.03) and reached higher maximum IMS (4 vs. 3; p = 0.03) without difference in mobilisation frequency (0.5 vs. 0.3; p = 0.32) or time to ASP (HR 1.15; 95% CI: 0.85, 1.56; p = 0.36). CONCLUSION: COVID-19 did not hinder mobilisation. Those treated in surge ICUs were more likely to receive EM and reached higher mobilisation levels.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Estudos Retrospectivos , Pandemias , Unidades de Terapia Intensiva
8.
J Cachexia Sarcopenia Muscle ; 14(4): 1721-1736, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209006

RESUMO

BACKGROUND: Sepsis-induced intensive care unit-acquired weakness (ICUAW) features profound muscle atrophy and attenuated muscle regeneration related to malfunctioning satellite cells. Transforming growth factor beta (TGF-ß) is involved in both processes. We uncovered an increased expression of the TGF-ß receptor II (TßRII)-inhibitor SPRY domain-containing and SOCS-box protein 1 (SPSB1) in skeletal muscle of septic mice. We hypothesized that SPSB1-mediated inhibition of TßRII signalling impairs myogenic differentiation in response to inflammation. METHODS: We performed gene expression analyses in skeletal muscle of cecal ligation and puncture- (CLP) and sham-operated mice, as well as vastus lateralis of critically ill and control patients. Pro-inflammatory cytokines and specific pathway inhibitors were used to quantitate Spsb1 expression in myocytes. Retroviral expression plasmids were used to investigate the effects of SPSB1 on TGF-ß/TßRII signalling and myogenesis in primary and immortalized myoblasts and differentiated myotubes. For mechanistical analyses we used coimmunoprecipitation, ubiquitination, protein half-life, and protein synthesis assays. Differentiation and fusion indices were determined by immunocytochemistry, and differentiation factors were quantified by qRT-PCR and Western blot analyses. RESULTS: SPSB1 expression was increased in skeletal muscle of ICUAW patients and septic mice. Tumour necrosis factor (TNF), interleukin-1ß (IL-1ß), and IL-6 increased the Spsb1 expression in C2C12 myotubes. TNF- and IL-1ß-induced Spsb1 expression was mediated by NF-κB, whereas IL-6 increased the Spsb1 expression via the glycoprotein 130/JAK2/STAT3 pathway. All cytokines reduced myogenic differentiation. SPSB1 avidly interacted with TßRII, resulting in TßRII ubiquitination and destabilization. SPSB1 impaired TßRII-Akt-Myogenin signalling and diminished protein synthesis in myocytes. Overexpression of SPSB1 decreased the expression of early (Myog, Mymk, Mymx) and late (Myh1, 3, 7) differentiation-markers. As a result, myoblast fusion and myogenic differentiation were impaired. These effects were mediated by the SPRY- and SOCS-box domains of SPSB1. Co-expression of SPSB1 with Akt or Myogenin reversed the inhibitory effects of SPSB1 on protein synthesis and myogenic differentiation. Downregulation of Spsb1 by AAV9-mediated shRNA attenuated muscle weight loss and atrophy gene expression in skeletal muscle of septic mice. CONCLUSIONS: Inflammatory cytokines via their respective signalling pathways cause an increase in SPSB1 expression in myocytes and attenuate myogenic differentiation. SPSB1-mediated inhibition of TßRII-Akt-Myogenin signalling and protein synthesis contributes to a disturbed myocyte homeostasis and myogenic differentiation that occurs during inflammation.


Assuntos
Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Citocinas , Inflamação , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Miogenina/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa
9.
Intensive Care Med Exp ; 11(1): 20, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37081235

RESUMO

BACKGROUND: Mechanical ventilation has side effects such as ventilator-induced diaphragm dysfunction, resulting in prolonged intensive care unit length of stays. Artificially evoked diaphragmatic muscle contraction may potentially maintain diaphragmatic muscle function and thereby ameliorate or counteract ventilator-induced diaphragm dysfunction. We hypothesized that bilateral non-invasive electromagnetic phrenic nerve stimulation (NEPNS) results in adequate diaphragm contractions and consecutively in effective tidal volumes. RESULTS: This single-centre proof-of-concept study was performed in five patients who were 30 [IQR 21-33] years old, 60% (n = 3) females and undergoing elective surgery with general anaesthesia. Following anaesthesia and reversal of muscle relaxation, patients received bilateral NEPNS with different magnetic field intensities (10%, 20%, 30%, 40%); the stimulation was performed bilaterally with dual coils (connected to one standard clinical magnetic stimulator), specifically designed for bilateral non-invasive electromagnetic nerve stimulation. The stimulator with a maximal output of 2400 Volt, 160 Joule, pulse length 160 µs at 100% intensity was limited to 50% intensity, i.e. each single coil had a maximal output of 0.55 Tesla and 1200 Volt. There was a linear relationship between dosage (magnetic field intensity) and effect (tidal volume, primary endpoint, p < 0.001). Mean tidal volume was 0.00, 1.81 ± 0.99, 4.55 ± 2.23 and 7.43 ± 3.06 ml/kg ideal body weight applying 10%, 20%, 30% and 40% stimulation intensity, respectively. Mean time to find an initial adequate stimulation point was 89 (range 15-441) seconds. CONCLUSIONS: Bilateral non-invasive electromagnetic phrenic nerve stimulation generated a tidal volume of 3-6 ml/kg ideal body weight due to diaphragmatic contraction in lung-healthy anaesthetized patients. Further perspectives in critically ill patients should include assessment of clinical outcomes to confirm whether diaphragm contraction through non-invasive electromagnetic phrenic nerve stimulation potentially ameliorates or prevents diaphragm atrophy.

10.
J Intensive Care ; 11(1): 15, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081577

RESUMO

BACKGROUND: Hemolysis is associated with increased mortality in patients with sepsis, ARDS, or therapy with extracorporeal membrane oxygenation (ECMO). To quantify a critical threshold of hemolysis in patients with ARDS and treatment with veno-venous ECMO, we aimed to identify cutoff values for cell-free hemoglobin (CFH) and haptoglobin (Hp) plasma concentrations associated with a significant increase in ICU mortality. METHODS: Patients with ARDS admitted to a tertiary ARDS referral center between 01/2007 and 12/2018 and treatment with veno-venous ECMO were included. Cutoff values for mean CFH (mCFH) and mean Hp (mHp) plasma concentrations dividing the cohort into groups with significantly different ICU mortalities were calculated and patient characteristics were compared. A multiple logistic regression model with stepwise backward variable selection was included. In addition, cutoff values for vulnerable relative timespans for the respective CFH and Hp concentrations were calculated. RESULTS: A quantitative cutoff value of 11 mg/dl for mCFH separated the cohort (n = 442) regarding ICU mortality (mCFH ≤ 11 mg/dl: 38%, [95%-CI: 32.22-43.93] (n = 277) vs. mCFH > 11 mg/dl: 70%, [61.99-76.47] (n = 165), p < 0.001). Analogously, a mHp cutoff value ≤ 0.39 g/l was associated with a significant increase in ICU mortality (mHp ≤ 0.39 g/l: 68.7%, [60.91-75.61] (n = 163) vs. mHp > 0.39 g/l: 38.7%, [33.01-44.72] (n = 279), p < 0.001). The independent association of ICU mortality with CFH and Hp cutoff values was confirmed by logistic regression adjusting for confounders (CFH Grouping: OR 3.77, [2.51-5.72], p < 0.001; Hp Grouping: OR 0.29, [0.19-0.43], p < 0.001). A significant increase in ICU mortality was observed when CFH plasma concentration exceeded the limit of 11 mg/dl on 13.3% of therapy days (≤ 13.3% of days with CFH > 11 mg/dl: 33%; [26.81-40.54] (n = 192) vs. > 13.3% of days with CFH > 11 mg/dl: 62%; [56.05-68.36] (n = 250), p < 0.001). Analogously, a mortality increase was detected when Hp plasma concentration remained ≤ 0.39 g/l for > 18.2% of therapy days (≤ 18.2% days with Hp ≤ 0.39 g/l: 27%; [19.80-35.14] (n = 138) vs. > 18.2% days with Hp ≤ 0.39 g/l: 60%; [54.43-65.70] (n = 304), p < 0.001). CONCLUSIONS: Moderate hemolysis with mCFH-levels as low as 11 mg/dl impacts mortality in patients with ARDS and therapy with veno-venous ECMO. Furthermore, a cumulative dose effect should be considered indicated by the relative therapy days with CFH-concentrations > 11 mg/dl. In addition, also Hp plasma concentrations need consideration when the injurious effect of elevated CFH is evaluated.

11.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769095

RESUMO

Critical illness myopathy (CIM) is an acquired, devastating, multifactorial muscle-wasting disease with incomplete recovery. The impact on hospital costs and permanent loss of quality of life is enormous. Incomplete recovery might imply that the function of muscle stem cells (MuSC) is impaired. We tested whether epigenetic alterations could be in part responsible. We characterized human muscle stem cells (MuSC) isolated from early CIM and analyzed epigenetic alterations (CIM n = 15, controls n = 21) by RNA-Seq, immunofluorescence, analysis of DNA repair, and ATAC-Seq. CIM-MuSC were transplanted into immunodeficient NOG mice to assess their regenerative potential. CIM-MuSC exhibited significant growth deficits, reduced ability to differentiate into myotubes, and impaired DNA repair. The chromatin structure was damaged, as characterized by alterations in mRNA of histone 1, depletion or dislocation of core proteins of nucleosome remodeling and deacetylase complex, and loosening of multiple nucleosome-spanning sites. Functionally, CIM-MuSC had a defect in building new muscle fibers. Further, MuSC obtained from the electrically stimulated muscle of CIM patients was very similar to control MuSC, indicating the impact of muscle contraction in the onset of CIM. CIM not only affects working skeletal muscle but has a lasting and severe epigenetic impact on MuSC.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Doenças Musculares , Humanos , Animais , Camundongos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Estado Terminal , Qualidade de Vida , Doenças Musculares/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco
12.
ASAIO J ; 69(1): 61-68, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759721

RESUMO

Measurement of oxygen uptake (VO 2 ) and carbon dioxide removal (VCO 2 ) on membrane lungs (MLs) during extracorporeal membrane oxygenation (ECMO) provides potential for improved and safer therapy. Real-time monitoring of ML function and degradation, calculating caloric needs as well as cardiac output, and weaning algorithms are among the future possibilities. Our study compared the continuous measurement of the standalone Quantum Diagnostics System (QDS) with the published Measuring Energy Expenditure in ECMO patients (MEEP) approach, which calculates sequential VO 2 and VCO 2 values via blood gas analysis and a physiologic gas content model. Thirty-nine datasets were acquired during routine venovenous ECMO intensive care treatment and analyzed. VO 2 was clinically relevant underestimated via the blood-sided measurement of the QDS compared to the MEEP approach (mean difference -42.61 ml/min, limits of agreement [LoA] -2.49/-87.74 ml), which could be explained by the missing dissolved oxygen fraction of the QDS equation. Analysis of VCO 2 showed scattered values with wide limits of agreement (mean difference 54.95 ml/min, LoA 231.26/-121.40 ml/min) partly explainable by a calculation error of the QDS. We described potential confounders of gas-sided measurements in general which need further investigation and recommendations for enhanced devices.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Pulmão/metabolismo , Oxigênio , Dióxido de Carbono , Débito Cardíaco
13.
J Clin Med ; 11(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36233603

RESUMO

(1) Background: Acute respiratory distress syndrome (ARDS) is a rare complication in multiply injured patients. Due to the rarity of ARDS development after trauma, little is known about outcomes of patients with trauma-associated ARDS compared to patients with non-trauma-associated ARDS. (2) Methods: This retrospective analysis included n = 1038 ARDS patients admitted to the ARDS center of Charité-Universitätsmedizin Berlin between 2007 and 2018. Patients with trauma-associated ARDS (n = 62) were compared to patients with non-trauma-associated ARDS (n = 976). In a secondary analysis, patients from the group with non-trauma-associated ARDS were 1:1 nearest neighbor matched to patients with trauma-associated ARDS. The primary outcomes were 28-day in-hospital mortality, 60-day in-hospital mortality, and overall in-hospital mortality. (3) Results: Overall in-hospital mortality in trauma-associated ARDS was 29.0% compared to 40.5% in all patients with non-trauma-associated ARDS (p = 0.074). The in-hospital mortality rate in matched patients with non-trauma-associated ARDS (33.9%) was comparable to the trauma-associated ARDS cohort (p = 0.701). Kaplan-Meier curves indicated time-sensitive variations in 28-day and 60-day in-hospital survival. (4) Conclusion: Mortality was not different in patients with trauma-associated ARDS compared to patients with non-trauma-associated ARDS. Survival rate in the Kaplan-Meier curves stabilized after the critical initial phase and throughout the further 60-day period in patients with trauma-associated ARDS compared to patients with non-trauma-associated ARDS. Since this divergence was less pronounced in the matched cohort, it may be related to the younger age, fewer comorbidities, and lower ARDS severity in patients with trauma-associated ARDS. Patients with trauma-associated ARDS remain a very different cohort compared to patients with non-trauma-associated ARDS. Therefore, the outcome comparison is limited, even after matching.

14.
J Clin Med ; 11(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36233843

RESUMO

Due to an Editorial Office error during processing, a number of male and female symbols were incorrectly shown in the pdf version of the manuscript [...].

15.
Crit Care ; 26(1): 237, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922829

RESUMO

BACKGROUND: The objective was to investigate the role of gene expression and plasma levels of the muscular protein myostatin in intensive care unit-acquired weakness (ICUAW). This was performed to evaluate a potential clinical and/or pathophysiological rationale of therapeutic myostatin inhibition. METHODS: A retrospective analysis from pooled data of two prospective studies to assess the dynamics of myostatin plasma concentrations (day 4, 8 and 14) and myostatin gene (MSTN) expression levels in skeletal muscle (day 15) was performed. Associations of myostatin to clinical and electrophysiological outcomes, muscular metabolism and muscular atrophy pathways were investigated. RESULTS: MSTN gene expression (median [IQR] fold change: 1.00 [0.68-1.54] vs. 0.26 [0.11-0.80]; p = 0.004) and myostatin plasma concentrations were significantly reduced in all critically ill patients when compared to healthy controls. In critically ill patients, myostatin plasma concentrations increased over time (median [IQR] fold change: day 4: 0.13 [0.08/0.21] vs. day 8: 0.23 [0.10/0.43] vs. day 14: 0.40 [0.26/0.61]; p < 0.001). Patients with ICUAW versus without ICUAW showed significantly lower MSTN gene expression levels (median [IQR] fold change: 0.17 [0.10/0.33] and 0.51 [0.20/0.86]; p = 0.047). Myostatin levels were directly correlated with muscle strength (correlation coefficient 0.339; p = 0.020) and insulin sensitivity index (correlation coefficient 0.357; p = 0.015). No association was observed between myostatin plasma concentrations as well as MSTN expression levels and levels of mobilization, electrophysiological variables, or markers of atrophy pathways. CONCLUSION: Muscular gene expression and systemic protein levels of myostatin are downregulated during critical illness. The previously proposed therapeutic inhibition of myostatin does therefore not seem to have a pathophysiological rationale to improve muscle quality in critically ill patients. TRIAL REGISTRATION: ISRCTN77569430 -13th of February 2008 and ISRCTN19392591 17th of February 2011.


Assuntos
Estado Terminal , Miostatina , Expressão Gênica , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular , Miostatina/genética , Miostatina/metabolismo , Estudos Prospectivos , Estudos Retrospectivos
17.
Medicina (Kaunas) ; 58(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36013535

RESUMO

Background and Objectives: Intensive care unit-acquired weakness (ICU-AW) is one of the most frequent neuromuscular complications in critically ill patients. We conducted a global survey to evaluate the current practices of diagnostics, treatment and prevention in patients with ICU-AW. Materials and Methods: A pre-survey was created with international experts. After revision, the final survey was endorsed by the European Society of Intensive Care Medicine (ESICM) using the online platform SurveyMonkey®. In 27 items, we addressed strategies of diagnostics, therapy and prevention. An invitation link was sent by email to all ESICM members. Furthermore, the survey was available on the ESICM homepage. Results: A total of 154 healthcare professionals from 39 countries participated in the survey. An ICU-AW screening protocol was used by 20% (28/140) of participants. Forty-four percent (62/141) of all participants reported performing routine screening for ICU-AW, using clinical examination as the method of choice (124/141, 87.9%). Almost 63% (84/134) of the participants reported using current treatment strategies for patients with ICU-AW. The use of treatment and prevention strategies differed between intensivists and non-intensivists regarding the reduction in sedatives (80.0% vs. 52.6%, p = 0.002), neuromuscular blocking agents (76.4% vs. 50%, p = 0.004), corticosteroids (69.1% vs. 37.2%, p < 0.001) and glycemic control regimes (50.9% vs. 23.1%, p = 0.002). Mobilization and physical activity are the most frequently reported treatment strategies for ICU-AW (111/134, 82.9%). The availability of physiotherapists (92/134, 68.7%) and the lack of knowledge about ICU-AW within the medical team (83/134, 61.9%) were the main obstacles to the implementation of the strategies. The necessity to develop guidelines for the screening, diagnosing, treatment and prevention of ICU-AW was recognized by 95% (127/133) of participants. Conclusions: A great heterogeneity regarding diagnostics, treatment and prevention of ICU-AW was reported internationally. Comprehensive guidelines with evidence-based recommendations for ICU-AW management are needed.


Assuntos
Unidades de Terapia Intensiva , Debilidade Muscular , Estado Terminal/terapia , Humanos , Debilidade Muscular/etiologia , Debilidade Muscular/prevenção & controle , Respiração Artificial , Inquéritos e Questionários
18.
Crit Care ; 26(1): 190, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765102

RESUMO

BACKGROUND: Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. METHODS: 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. RESULTS: Most patients were between 50 and 70 years of age. PaO2/FiO2 ratio prior to ECMO was 72 mmHg (IQR: 58-99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41-0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28-1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. CONCLUSIONS: Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. TRIAL REGISTRATION: Registered in the German Clinical Trials Register (study ID: DRKS00022964, retrospectively registered, September 7th 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00022964 .


Assuntos
COVID-19 , Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , COVID-19/terapia , Humanos , Unidades de Terapia Intensiva , Pandemias , Síndrome do Desconforto Respiratório/terapia , Análise de Sobrevida
19.
JMIR Form Res ; 6(4): e22866, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394445

RESUMO

BACKGROUND: Digital health technologies such as continuous remote monitoring and artificial intelligence-driven clinical decision support systems could improve clinical outcomes in intensive care medicine. However, comprehensive evidence and guidelines for the successful implementation of digital health technologies into specific clinical settings such as the intensive care unit (ICU) are scarce. We evaluated the implementation of a remote patient monitoring platform and derived a framework proposal for the implementation of digital health technology in an ICU. OBJECTIVE: This study aims to investigate barriers and facilitators to the implementation of a remote patient monitoring technology and to develop a proposal for an implementation framework for digital health technology in the ICU. METHODS: This study was conducted from May 2018 to March 2020 during the implementation of a tablet computer-based remote patient monitoring system. The system was installed in the ICU of a large German university hospital as a supplementary monitoring device. Following a hybrid qualitative approach with inductive and deductive elements, we used the Consolidated Framework for Implementation Research and the Expert Recommendations for Implementing Change to analyze the transcripts of 7 semistructured interviews with clinical ICU stakeholders and descriptive questionnaire data. The results of the qualitative analysis, together with the findings from informal meetings, field observations, and previous explorations, provided the basis for the derivation of the proposed framework. RESULTS: This study revealed an insufficient implementation process due to lack of staff engagement and few perceived benefits from the novel solution. Further implementation barriers were the high staff presence and monitoring coverage in the ICU. The implementation framework includes strategies to be applied before and during implementation, targeting the implementation setting by involving all ICU stakeholders, assessing the intervention's adaptability, facilitating the implementation process, and maintaining a vital feedback culture. Setting up a unit responsible for implementation, considering the guidance of an implementation advisor, and building on existing institutional capacities could improve the institutional context of implementation projects in the ICU. CONCLUSIONS: Implementation of digital health in the ICU should involve a thorough preimplementation assessment of the ICU's need for innovation and its readiness to change, as well as an ongoing evaluation of the implementation conditions. Involvement of all stakeholders, transparent communication, and continuous feedback in an equal atmosphere are essential, but leadership roles must be clearly defined and competently filled. Our proposed framework may guide health care providers with concrete, evidence-based, and step-by-step recommendations for implementation practice, facilitating the introduction of digital health in intensive care. TRIAL REGISTRATION: ClinicalTrials.gov NCT03514173; https://clinicaltrials.gov/ct2/show/NCT03514173.

20.
Crit Care Explor ; 4(4): e0671, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35372842

RESUMO

To investigate the ICU survival of venovenous extracorporeal membrane oxygenation (ECMO) patients suffering from COVID-19-related acute respiratory distress syndrome (ARDS) versus ECMO patients without COVID-19 (non-COVID-19)-related ARDS. DESIGN: Preliminary analysis of data from two prospective ECMO trials and retrospective analysis of a cohort of ARDS ECMO patients. SETTING: Single-center ICU. PATIENTS: Adult ARDS ECMO patients, 16 COVID-19 versus 23 non-COVID-19 patients. Analysis of retrospective data from 346 adult ARDS ECMO patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: COVID-19 and non-COVID-19 ARDS patients did not differ with respect to preexisting disease or body mass index. ICU survival rate was 62% for COVID-19 ECMO patients and 70% for non-COVID-19 ECMO patients. COVID-19 ECMO survivors were supported with ECMO for a median of 43 days (interquartile range [IQR], 18-58 d) versus 16 days (IQR, 19-39 d; p = 0.03) for non-COVID-19 patients. The median duration of ECMO therapy for all ARDS patients between 2007 and 2018 was 15 days (IQR, 6-28 d). The subgroup of patients suffering from any viral pneumonia received ECMO support for a median of 16 days (IQR, 9-27 d), survivors of influenza pneumonia received ECMO support for 13 days (IQR, 7-25 d). CONCLUSIONS: COVID-19 patients required significant longer ECMO support compared with patients without COVID-19 to achieve successful ECMO weaning and ICU survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...